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Abstract

Composite laminate structures can be designed for specific purposes by optimizing the number of plies and the ply

orientations. Previous studies established the behavior of the first natural frequencies of the bending motion of a thin

composite plate in the framework of classical plate theory for different boundary conditions. Since plates can also undergo

in-plane vibration, the present study is aimed at investigating the effect of the ply orientation on such in-plane vibration.

This is made possible through theoretical simulation with a model based on the Rayleigh–Ritz formulation in conjunction

with Hamilton principle. The total matrices deduced by minimizing the Hamilton function exhibit a decoupling of bending

and membrane motions, which are in plane. The natural frequencies of the membrane motion can therefore be calculated

and the ply orientations are investigated for free–free boundary conditions for a square plate. The present model is first

validated by comparing the natural frequencies of the bending and in-plane motions of isotropic plates with available data

in the literature and the agreement is found to be excellent with the maximum discrepancy being only 0.25%. The

validation is then extended to orthotropic plates for the first two bending natural frequencies under simply supported

boundary conditions for different ply orientations. The present study establishes that for free–free boundary conditions the

first natural frequency of the in-plane vibration of a composite square plate is symmetrical with respect to 45� ply

orientation and is maximum for this value. This study suggests that it is possible to use this analysis to design composite

plates by properly tailoring ply orientations.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In many industries, such as Aerospace, Aeronautics, Automotive, the advantage of composite materials
over conventional materials has been well established. From a theoretical point of view this has led to the
development of numerous models of composite plates for the prediction of different parameters including free
vibration. The more common composites used are laminated plates which are typically made of different
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Nomenclature

anm coefficients of W

a; b plate dimensions in x and y directions,
respectively

bnm; cnm coefficients of F1 and F2, respectively
B;Me1;Me2 subscripts for bending, membranes

along x1 and x2

c ¼ cosðyoÞ; s ¼ sinðyoÞ

dnm; enm coefficients of j1 and j2, respectively
ed density of deformation energy
ek density of kinetic energy
E1;E2 young modulus in x1 and x2 directions
G12 shear modulus in Ox1x2 plane
G13;G23 shear modulus in Ox1x3 and Ox2x3 plane
H function of Hamilton
Kf ;Cf bending translational and rotational

stiffness of springs for BC
Km1;Km2 membrane translational stiffness per

unit length of springs for BC
Ks1;Ks2 shear stiffness per unit length of springs

for BC
½Knmpq� stiffness matrix

Me1=Me2 subscripts for coupling between mem-
brane in x1 and x2 directions

½Mnmpq� mass matrix
n;m indices in x1 and x2 directions
Qij reduced stiffness
S area of the plate
Se1=Se2 subscripts for coupling between shear in

x1 and x2 directions
t1; t2 two arbitrary times
T kinetic energy
V deformation energy
W transverse displacement
x1;x2;x3 three coordinate axes of the plate
eij deformations
F1;F2 membrane motions in x1 and x2 direc-

tions
j1;j2 shear motions in x1 and x2 directions
n1; n2 Poisson ratio
yo anisotropy angle
sij stresses
r density of the plate
Cnðx1Þ;Cmðx2Þ admissible functions for the basis
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layers bonded together. Basically, each layer is generally orthotropic and has a different orientation of the
fibers. The main advantage of composite structures is their ability to be designed for specific purposes [1,2]
usually with the proper number of plies and the orientation of each ply.

In structural acoustics, recent work in sound transmission through laminated structures [3] has shown that
the fundamental frequency is a key parameter. The natural frequencies are sensitive to the orthotropy
properties of composite plates and design-tailoring tools may help in controlling this fundamental frequency.
The understanding of prediction models facilitates the development of such tools. Previous studies resulted in
a good understanding of the behavior of the first natural frequencies of the bending motion of a thin plate
[4–6]. To the authors’ best knowledge the review of the open literature indicates that in-plane vibration has
received little attention. This is probably because in-plane natural frequencies are higher than bending ones
and because in most laminates the bending and membrane stretching motions are usually coupled. However,
all such investigations considered several layers of the composite laminates in studying their dynamic
behavior. Recent studies [7,8,15] proposed an analysis for isotropic plates. In the present study a model of a
finite generally orthotropic single laminate including bending, membrane and shear motions is developed for
calculating the free vibration using the Rayleigh–Ritz method employing the variational method. Different
displacement fields from the classical plate theory (CPT) to generalized shear deformation theory (GSDT)
have been used in the literature [9]. It is well established now that CPT models over-estimate natural
frequencies as a consequence of neglecting the shear stresses. GSDT provides a more accurate description of
the laminates but at the expense of increased CPU time. The Mindlin first shear deformation theory (FSDT)
therefore offers an interesting alternative from an engineering point of view to perform design analysis.
A discussion of the main different models used to model composites dynamic behavior is presented in a recent
paper [10]. This model is adopted in the present work with appropriate correction factors to account for the
non-parabolic description of shear stresses. In order to deal with arbitrary boundary conditions varying
continuously from soft to hard, artificial springs are used to control the translational and rotational motions
along the contour [3,11]. Such a technique has been successfully used in a recent study [12]. The present paper
is mainly concerned with free–free boundary conditions for the composite plate although the validation is
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extended to the case of simply supported boundary conditions with varying ply orientation. The equations
derived from minimizing the function of Hamilton with respect to the coefficients in the basis lead to the
classical equations of motion in terms of mass and stiffness matrices. The formalism adopted in the present
modeling allows the contribution of the plate and of the boundary conditions to be superposed [3]. It is shown
that the sub-matrices of the bending motion and of the in-plane motions can be separated. It is found that, in
accordance with symmetrical laminate models, there is no coupling between bending and membrane motion
[9]. This allows the natural frequencies of the membrane motion to be calculated independent of the bending
and of the shear motions. Emphasis is placed on the variation of the ply orientations for the membrane motion
in both directions including the coupling. The understanding of this phenomenon is important for developing
optimization codes of laminate composites.

The present model is first validated by comparing the natural frequencies of the bending motion of
isotropic plates. Data are available in the literature for the bending [13] and the membrane [15] in terms of
non-dimensional natural frequencies. The convergence of the present formulation is studied and allows
the natural frequencies to be accurately calculated by increasing the number of terms accounted for
in the different expansions. Excellent agreement is found in the case of a square plate: the maximum
discrepancy is 0.25% for the bending and 0.02% for the membrane. The validation is then extended to
the case of orthotropic composite Kevlar–Epoxy material. The first two natural frequencies are
compared with existing data in the literature [16] for different ply orientations using a finite element
formulation. When comparing both results two observations can be made: (1) Results from Ref. [16]
are slightly higher (0.3–4%) than those of the present model, this difference being minimum for 45�

orientation. The fundamental frequency computed using the present model agrees with the
closed-form expression provided in Ref. [1]. (2) Both results are highlighting the same pattern: the
natural frequencies are increasing while increasing ply orientations. These results are for the case
of simply supported BC where the plate is elastically restrained against translation at the edges
(transverse and stretching) and consequently the stiffness of the plate is increased when increasing the
orthotropy angle. The model is further used to take advantage of the decoupling of bending and membrane
motions.

It is found that bending and membrane motions have different behaviors. For free–free BC the first natural
frequency of the membrane reaches a maximum for a 45� orientation while the bending fundamental
frequency reaches a minimum. These frequencies are both symmetrical with respect to this orientation.
Calculation of the next seven frequencies has been carried out for the membrane motion. They exhibit
different behavior, but still remain symmetrical with respect to the 45� orientation.

This study suggests that tools can be developed based on this analysis, which will allow designing composite
plates by properly tailoring the ply orientation for specific applications, particularly in sound transmission in
structural acoustics.

The rest of the paper is split into two main parts: in the first part the analytical modeling is presented and
the second part deals with the numerical simulations and a discussion of the main results.
2. Analytical modeling

2.1. Plate modeling

A baffled finite plate is inserted in a rigid baffle. The geometry of the plate is depicted in Fig. 1. The plate is
generally orthotropic and the angle y0 is used to describe the orientation of the orthotropic properties with
respect to the natural axes of the plate. The displacement field describing the behavior of the plate is the one
given by Mindlin model including the in-plane and the bending motions:

u1 ¼ F1 � x3
qW

qx1
� x3j1; u2 ¼ F2 � x3

qW

qx2
� x3j2; u3 ¼W , (1)

where the first term of u1 and of u2 describes the bending motion of the plate. The five quantities F1, F2, j1, j2

and W are functions of x1 and x2. This displacement field is sketched in Fig. 2.
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Fig. 1. Sketch illustrating the geometry of the anisotropic composite plate.

Fig. 2. Sketch illustrating the displacement field: (a) transverse displacement; (b) membrane; (c) flexion; and (d) shear.
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The present work deals with the modeling of generally orthotropic plates. The constitutive equations are
expressed by the following relations:

s11
s22
s12

0
B@

1
CA ¼

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

0
B@

1
CA

�11

�22

2�12

0
B@

1
CA, (2)

s23
s13

 !
¼

Q44 Q45

Q45 Q55

 !
2�23

2�13

 !
, (3)
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where the Qij account for the angle of orthotropy in the plane Ox1x2. They are given by

Q11

Q22

Q12

Q66

Q16

Q26

0
BBBBBBBBB@

1
CCCCCCCCCA
¼

c4 s4 2s2c2 4c2s2

s4 c4 2s2c2 4c2s2

c2s2 c2s2 c4 þ s4 �4s2c2

s2c2 s2c2 �2s2c2 ðc2 � s2Þ2

c3s �s3c s3c� sc3 2scðs2 � c2Þ

s3c �sc3 c3s� s3c 2scðc2 � s2Þ

0
BBBBBBBBB@

1
CCCCCCCCCA

Q11

Q22

Q12

Q66

0
BBBB@

1
CCCCA, (4)

with Q16 and Q26 being non-zero to account for the general orthotropy. The Qij are related to the engineering
parameters by

Q11 ¼
E1

1� n1n2
; Q12 ¼

n1E2

1� n1n2
¼

n2E1

1� n1n2
; Q22 ¼

E2

1� n1n2
; Q66 ¼ G12, (5)

Q44 ¼ G23; Q55 ¼ G13, (6)

where E1, E2, n1, n2 and G12 are the five parameters which fully characterize the plate in the Ox1x2 plane.
The strain field is related to the displacement field:

�ij ¼
1

2

qui

qxj

þ
quj

qxi

� �
; i; j ¼ 1; 2. (7)

The function of Hamilton H can therefore be built as a function of the kinetic energy T and the deformation
energy V . This functional is calculated as an integral between two arbitrary times t1 and t2:

H ¼

Z t2

t1

dt;

Z
S

ðT � V ÞdS, (8)

where the integral performed over the surface of the plate represents the energy of the system. The density
of kinetic and deformation energies are first calculated in order to perform the calculation of T and V .
The density of kinetic energy over the surface of the plate is given by

ek ¼
1

2

Z h=2

�h=2
r
X

i

u2
i dx3. (9)

The following equation is straightforward after a few algebraic calculations:

ek ¼
1

2
d1

q2W

qx1qt

� �2

þ d2
qj1

qt

� �2

þ d3
qF1

qt

� �2

þ d4
q2W

qx1qt

j1

qt

� �
þ d7

q2W
qx2qt

� �2
(

þ d8
qj2

qt

� �2

þ d9
qF2

qt

� �2

þ d10
q2W

qx2qt

qj2

qt

� �
þ d13

qW

qt

� �2
)
,

The di parameters have been used in order to have concise expressions for ek and to allow the compa-
rison with a more general model [17] previously developed for which the present formulation can be
viewed as a special case. The di are functions of the density and of the thickness of the plate and are
defined as

d1 ¼ d2 ¼ d7 ¼ d8 ¼ r
h3

12
; d3 ¼ d9 ¼ d13 ¼ rh; d4 ¼ d10 ¼ 2r

h3

12
. (10)

The density of the deformation energy is given by

ed ¼
1

2

Z h=2

�h=2
sij �ij dx3. (11)
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The calculation of ed is straightforward and leads to the following expression:

ed ¼
1

2
l1

q2W
qx2

1

� �2

þ l2
qj1

qx1

� �2

þ l3
qF1

qx1

� �2

þ l4
q2W
qx2

1

qj1

qx1

� �2

þ l7
q2W

qx2
2

� �2
(

þl8
qj2

qx2

� �2

þ l9
qF2

qx2

� �2

þ l10
q2W

qx2
2

qj2

qx2

� �2

þ l13
q2W
qx2

1

q2W
qx2

2

� �

þl14
q2W
qx2

1

qj2

qx2

� �
þ l16

q2W
qx2

2

qj1

qx1

� �
þ l17

qj2

qx2

qj2

qx2

� �
þ l21

qF1

qx1

qF2

qx2

� �

þl22
q2W

qx1qx2

� �2

þ l23
qj1

qx2

� �2

þ l24
qj2

qx1

� �2

þ l25
qF1

qx2

� �2

þl26
qF2

qx1

� �2

þ l27
q2W

qx1qx2

qj1

qx2

� �
þ l28

q2W

qx1qx2

qj2

qx1

� �
þ l31

qj1

qx2

qj2

qx1

� �

þl36
qF1

qx2

qF2

qx1

� �
þ l37j2

1 þ l38j2
2 þ l39

q2W
qx2

1

q2W

qx1qx2

� �

þl40
q2W
qx2

1

qj1

qx2

� �
þ l42

q2W

qx1qx2

qj1

qx1
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� �
þ l47
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1
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qx1

� �
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qj2

qx1

� �
þ l53

qF1

qx1

qF2

qx2

� �
þ l54
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qx2
2
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� �

þl55
q2W
qx2

2

qj1

qx2

� �
þ l57

q2W

qx1qx2

qj2

qx2

� �
þ l58

qj1

qx2

qj2

qx2

� �
þ l62

qF1

qx2

qF2

qx2

� �

þl63
q2W
qx2

2

qj2

qx1

� �
þ l65

qj2

qx1

qj2

qx2

� �
þ l68

q2F2

qx1qx2

� �
þ l69j1j2

)
,

with

l1 ¼ Q11

h3

12
; l2 ¼ Q11

h3

12
; l3 ¼ Q11h,

l4 ¼ 2Q11

h3

12
; l7 ¼ Q22

h3

12
; l8 ¼ Q22

h3

12
,

l9 ¼ Q22h; l10 ¼ 2Q22

h3

12
; l13 ¼ 2Q12

h3

12
,

l14 ¼ 2Q12

h3

12
; l16 ¼ 2Q12

h3

12
; l17 ¼ 2Q12

h3

12
,

l21 ¼ 2Q12h; l22 ¼ 4Q66

h3

12
; l23 ¼ Q66

h3

12
,

l24 ¼ Q66

h3

12
; l25 ¼ Q66h; l26 ¼ Q66h

l27 ¼ 4Q66

h3

12
; l28 ¼ 4Q66

h3

12
; l31 ¼ 2Q66

h3

12
,

l36 ¼ 2Q66h; l37 ¼ Q55h; l38 ¼ Q44h,

l39 ¼ 4Q16

h3

12
; l40 ¼ 2Q16

h3

12
; l42 ¼ 4Q16

h3

12
,

l43 ¼ 2Q16

h3

12
; l47 ¼ 2Q16h; l48 ¼ 2Q16

h3

12
,
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l50 ¼ 2Q16

h3

12
; l53 ¼ 2Q16h; l54 ¼ 4Q26

h3

12
,

l55 ¼ 2Q26

h3

12
; l57 ¼ 4Q26

h3

12
; l58 ¼ 2Q26

h3

12
,

l62 ¼ 2Q26h; l63 ¼ 2Q26

h3

12
; l65 ¼ 2Q26

h3

12
,

l68 ¼ 2Q26h; l69 ¼ 2Q45h.

In order to use the variational principles and the Rayleigh–Ritz method, admissible functions Cnðx1Þ and
Cmðx2Þ are adopted for the transverse displacement, the membrane motions and the shear motions:

W ðx1; x2Þ ¼
X

n

X
m

anmCnðx1ÞCmðx2Þ, (12)

F1ðx1;x2Þ ¼
X

n

X
m

bnmCnðx1ÞCmðx2Þ, (13)

F2ðx1; x2Þ ¼
X

n

X
m

cnmCnðx1ÞCmðx2Þ, (14)

j1ðx1;x2Þ ¼
X

n

X
m

dnmCnðx1ÞCmðx2Þ, (15)

j2ðx1;x2Þ ¼
X

n

X
m

enmCnðx1ÞCmðx2Þ, (16)

where anm, bnm, cnm, dnm and enm are arbitrary coefficients to be determined. Following Berry et al. [11] and
Woodcock and Nicolas [3] simple polynomial functions are chosen for CðxÞ as

Cnðx1Þ ¼
2

a
x1

� �n

; Cmðx2Þ ¼
2

b
x2

� �m

. (17)

These functions in conjunction with artificial springs along the contour to control the translational and
rotational motion will allow arbitrary boundary conditions to be modeled.

The function of Hamilton H is then a function of the different unknowns. Minimizing H with respect to
the unknowns leads to the classical equation of motion accounting for the mass and stiffness matrix defined as

½MPlate
nmpq� ¼

½MB
nmpq� ½0� ½0� ½M

B=Se1
nmpq � ½M

B=Se2
nmpq �

½0� ½MMe1
nmpq� ½0� ½0� ½0�

½0� ½0� ½MMe2
nmpq� ½0� ½0�

½M
Se1=B
nmpq � ½0� ½0� ½M

Se1
nmpq� ½0�

½M
Se2=B
nmpq � ½0� ½0� ½0� ½M

Se2
nmpq�

2
666666664

3
777777775
, (18)

½MB
nmpq� ¼ ½d1M1 þ d7M2 þ d13M3�, (19)

½MMe1
nmpq� ¼ ½d3M3�; ½M

Me2
nmpq� ¼ ½d9M3�, (20)

½MSe1
nmpq� ¼ ½d2M3�; ½M

Se2
nmpq� ¼ ½d8M3�, (21)

½MB=Se1
nmpq � ¼

1
2
½d4M4�; ½M

B=Se2
nmpq � ¼

1
2
½d10M5�, (22)
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½KPlate
nmpq� ¼

½KB
nmpq� ½0� ½0� ½K

B=Se1
nmpq � ½K

B=Se2
nmpq �

½0� ½K
Me1
nmpq� ½KMe1=Me2

nmpq � ½0� ½0�

½0� ½KMe2=Me1
nmpq � ½K

Me2
nmpq� ½0� ½0�

½K
Se1=B
nmpq � ½0� ½0� ½K

Se1
nmpq� ½K

Se1=Se2
nmpq �

½K
Se2=B
nmpq � ½0� ½0� ½K

Se2=Se1
nmpq � ½K

Se2
nmpq�

2
6666666664

3
7777777775
, (23)

The mass and stiffness show that there is no coupling between bending and membrane motions and between
membrane and shearing. The elements of the sub-matrices are given by

½KB
nmpq� ¼

1
2
½2l1K1 þ 2l7K2 þ l13K21 þ 2l22K4 þ l39K22 þ l54K23�, (24)

½KMe1
nmpq� ¼

1
2
½2l3K11 þ 2l25K12 þ l47K24�, (25)

½KMe2
nmpq� ¼

1
2
½2l9K12 þ 2l26K11 þ l68K24�, (26)

½KMe1=Me2
nmpq � ¼ 1

2
½l21K13 þ l36K14 þ l53K11 þ l62K12�, (27)

½KSe1
nmpq� ¼

1
2
½2l2K11 þ 2l23K12 þ l43K24 þ 2l37K15�, (28)

½KSe2
nmpq� ¼

1
2½2l8K12 þ 2l24K11 þ l65K24 þ 2l38K15�, (29)

½KSe1=Se2
nmpq � ¼

1
2
½l17K13 þ l31K14 þ l50K11 þ l58K12 þ l69K15�, (30)

½KB=Se1
nmpq � ¼

1
2
½l4K5 þ l16K6 þ l27K7 þ l40K9 þ l42K10 þ l55K8�, (31)

½KB=Se2
nmpq � ¼

1
2
½l10K8 þ l14K9 þ l28K10 þ l48K5 þ l57K7 þ l63K6�, (32)

The preceding equations Mi and Ki are given in the Appendix. The eqns assume the following vector of
unknowns:

Vu ¼ f½anm�; ½bnm�; ½cnm�; ½dnm�; ½enm�g
T. (33)

2.2. On the boundary conditions modeling

In order to deal with the different cases encountered in real situations, boundary conditions must be
accounted for. This is achieved by the means of six artificial springs to model the dynamic behavior at the
boundaries: two for the bending motion to control the translational and rotational motions, two for the
membrane (in both directions) and finally two for the shear motion (both directions) as well. Appropriate
values of the stiffnesses of these springs allow the different configurations to be modeled. The case of free–free
boundary conditions is modeled by setting values of zero to the six springs. The modeling was proposed in
Ref. [17] for the general case of stratified structures and the principle for thin plate was illustrated for example
in Ref. [3].

ep ¼
1

2

Z hn=2

�hn=2
kf W 2 þ cf

qW

qn

� �2

þ km1ðf1Þ
2
þ km2ðf2Þ

2
þ ks1ðj1Þ

2
þ ks2ðj2Þ

2

" #
dðRn � zÞ, ð34Þ

Rigidities per unit length are defined so that ep is expressed as follows:

ep ¼
1

2
Kf W 2 þ Cf

qW

qn

� �2

þ Km1ðf1Þ
2
þ Km2ðf2Þ

2
þ Ks1ðj1Þ

2
þ Ks2ðj2Þ

2

( )
. (35)
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The function of Hamilton of the BC is defined as

Hbc ¼

Z t1

t0

Z
G
ð�epÞdGdt. (36)

The integral on the contour G is split into four in order to account for the individual contributions of the
four edges of the plate. This allows the simulation of different BC on each edge.
3. Numerical analysis

The accuracy of the natural frequencies depends on the number of terms used in the series in Eqs. (12)–(14).
In all the results presented hereafter, the convergence of the series has been carefully studied. The number of
terms is progressively increased. In the present paper, simulations are undertaken on a square plate with a
dimension a ¼ 0:376m. The properties of the plate are given in Table 1.
3.1. Validation of the proposed model

The present modeling is validated on a square aluminum isotropic plate and on an orthotropic plate
(Kevlar–Epoxy material, Material III of Table 1 with a dimension a ¼ 0:3048m and a thickness of 1:077mm).
Natural non-dimensional frequencies for free–free boundary condition are available in the textbook by
Gorman [13] for the bending. For the present formulation, natural frequencies were performed using the
IMSL routines. The sub-matrix of the bending motion is extracted from the whole matrix, which exhibits no
coupling between the bending and the in-plane motions. Results are presented in Table 2 for the isotropic
plate. The thickness of the plate is 3.175mm. The first row presents natural frequencies deduced from data
given in Ref. [13] while the second row indicates natural frequencies obtained with the present formulation.
The values in brackets represent the number of terms which ensures the convergence of the series in the present
modeling. This table shows that the agreement is excellent; the maximum discrepancy observed is 0.25%.
Table 1

Material properties of composite plates

Material E1 (Pa) E2 (Pa) G (Pa) n12 r ðkg=m3Þ n21

Material I 13.8 �106 0.9 �106 0.71 �106 0.20 100 0.0195

Material II 20.3 �1010 1.12 �1010 0.84 �1010 0.32 1600 0.01766

Material III 7.6 �1010 0.55 �1010 0.23 �1010 0.34 1600 0.0246

Table 2

Comparison of the bending natural frequencies of a square aluminum isotropic plate

Ref. [14] (Hz) Present model (Hz)

69.94 70.12 ðN ¼ 12Þ

102.11 102.26 ðN ¼ 12Þ

129.73 129.62 ðN ¼ 12Þ

333.35 333.79 ðN ¼ 12Þ

361.82 362.32 ðN ¼ 12Þ

408.77 408.80 ðN ¼ 12Þ

618.46 618.29 ðN ¼ 15Þ

650.54 650.15 ðN ¼ 15Þ

803.30 803.70 ðN ¼ 15Þ

849.19 849.54 ðN ¼ 15Þ

1075.88 1075.58 ðN ¼ 17Þ
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The validation is then extended to the case of orthotropic composite Kevlar–Epoxy material. The first two
natural frequencies are compared with existing data in the literature [16] for different ply orientations using a
finite element formulation and the results are presented in Tables 4 and 5 When comparing both results two
observations can be made: (1) Results from Ref. [16] are slightly higher (0.3–4%) than those of the present
model, this difference being minimum for 45� orientation. The fundamental frequency computed using the
present model agrees with the closed-form expression provided in Ref. [1]. (2) Both results are highlighting
the same pattern: the natural frequencies are increasing while increasing ply orientations. These results are for
the case of simply supported BC, the displacement at the edges (transverse and stretching) are zero and
consequently the stiffness of the plate is increased when increasing the orthotropy angle and is uniformly
distributed in its area resulting in an increase of the natural frequencies.

Results for the case of in-plane vibration are compared with those given in Ref. [15], which provide the six
natural frequencies of a square plate for the membrane motion. The result of the comparison is presented in
Table 3. The value of 9 in brackets represents the number of terms which ensures the convergence of the series.
Once again the agreement is excellent, the maximum discrepancy obtained is within 0.02%. The validation has
been extended to the case of simply-supported boundary conditions for an orthotropic plate. Tables 4 and 5
Table 3

Comparison of the membrane first natural frequencies of an isotropic square plate

Ref. [15] (Hz) Present model (Hz)

276.346 276.290 ðN ¼ 9Þ

294.324 294.280 ðN ¼ 9Þ

294.324 294.280 ðN ¼ 9Þ

312.898 312.955 ðN ¼ 9Þ

355.642 355.692 ðN ¼ 9Þ

411.006 411.040 ðN ¼ 9Þ

Table 4

Comparison of the fundamental bending frequency of an orthotropic plate under simply-supported boundary conditions—Material III

Angle (deg.) FEM [16] (Hz) Present model (Hz)

0 22.07 21.22

15 22.09 21.30

30 22.13 21.71

45 22.14 22.07

60 22.12 21.71

75 22.08 21.30

90 22.06 21.22

Table 5

Comparison of the second natural bending frequency of an orthotropic plate under simply-supported boundary conditions—Material III

Angle (deg.) FEM [16] (Hz) Present model (Hz)

0 30.32 32.06

15 33.25 34.52

30 40.48 39.16

45 46.81 41.23

60 40.46 39.16

75 33.25 34.52

90 30.36 32.06
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show the results for the fundamental and second natural frequency respectively. The comparison between the
present simulations and existing data in the literature exhibits a larger discrepancy. Further work is necessary
to investigate this point.
3.2. Effect of the ply orientation on the bending natural frequencies

The fundamental frequency is of primary interest in structural acoustics particularly in sound transmission
[3]. The effect of ply orientation under free–free boundary conditions is reported in this section for a composite
material whose mechanical properties are listed in Table 1. The behavior of the fundamental frequency is
studied versus the ply orientation varying from 0� to 90�. The plate is square with a thickness of 1mm. Table 6
shows that the frequency decreases with increasing angle, reaching a minimum value for a 45� orientation.
This frequency is symmetrical with respect to the 45� orientation. It is interesting to point out that an
inverse behavior was reported in the literature [16] for the case of simply supported boundary conditions of a
square plate.
3.3. Effect of the ply orientation on the in-plane vibration

As shown in the theoretical calculation, the decoupling of the bending and the membrane motions allows
the in-plane vibration to be investigated independent of the bending motion. There is a lack of information in
the literature regarding the in-plane vibration mainly for two reasons. Firstly, in most laminates there is a
coupling between the different motions and secondly, the membrane natural frequencies are higher than the
bending ones for typical plates. In the present paper the in-plane natural frequencies are calculated for a
square composite plate whose mechanical properties are listed in Table 1. It has been verified that the
membrane natural frequencies are not dependent on the thickness since the in-plane vibration represents the
behavior of the plate on its area. From the point of view of geometrical parameters, only the dimensions a and
b are of importance.

In Eqs. (18), (23), the membrane in x1 and x2 directions has been isolated without and with coupling terms.
These sub-matrices are extracted from the whole matrix and IMSL routines are then used to perform
the calculation of the natural frequencies. The first column of Table 7 indicates the angle of orthotropy,
the three other ones give the natural frequencies of the membrane in x1 direction, in x2 direction and
in both directions with coupling terms. For design purposes, results were reported in the paper by Bert [2]
for the bending motion. It is shown in the present study that the membrane first natural frequencies
are symmetrical with respect to 45�: the frequency increases from 0� to 45� and decreases from 45� to
90� as depicted in Table 8. The formulation developed in the present paper allows simulation of a system
with a large number of degrees of freedom. Several natural frequencies can therefore be calculated and
Table 8 presents results of the next seven frequencies. The symbol Fi is used to designate the natural
Table 6

Bending fundamental frequency—Material II

Angle (deg.) Frequency (Hz) Angle (deg.) Frequency (Hz)

0 16.991 50 16.147

5 16.934 55 16.179

10 16.793 60 16.239

15 16.625 65 16.334

20 16.465 70 16.465

25 16.334 75 16.625

30 16.239 80 16.793

35 16.179 85 16.934

40 16.147 90 16.991

45 16.138
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Table 7

First natural frequency of the membrane—Material I

Angle (deg.) Me1 (Hz) Me2 (Hz) Me1 þMe2 (Hz)

0 112.051 112.051 109.865

5 112.399 116.997 110.202

10 113.396 122.097 111.190

15 114.922 123.585 112.751

20 116.799 124.522 114.761

25 118.814 125.283 117.027

30 120.753 125.784 119.282

35 122.458 125.908 121.210

40 123.848 125.607 122.511

45 124.905 124.905 122.970

50 125.607 123.848 122.511

55 125.908 122.458 121.210

60 125.784 120.753 119.282

65 125.283 118.814 117.027

70 124.522 116.799 114.761

75 123.585 114.922 112.751

80 122.097 113.396 111.190

85 116.997 112.399 110.202

90 112.051 112.051 109.865

Table 8

Effect of the ply orientation on the membrane natural frequencies—Material I

Angle (deg.) F 2 F3 F4 F5 F6 F7 F8

0 126.229 138.312 205.001 223.847 225.185 236.265 252.379

5 125.849 139.128 203.911 221.171 223.439 238.117 253.949

10 124.987 141.267 200.753 214.488 219.423 242.530 257.235

15 124.084 144.199 195.728 205.220 215.076 248.727 260.103

20 123.401 147.503 189.131 194.614 211.937 256.342 261.330

25 123.050 150.838 181.785 184.064 210.986 260.262 263.974

30 123.042 153.883 174.740 174.883 212.603 256.321 267.972

35 123.296 156.330 167.440 169.398 216.787 249.473 268.075

40 123.624 157.916 162.741 165.911 223.153 240.905 268.195

45 123.776 158.464 161.108 164.717 229.380 233.837 269.256

50 123.624 157.916 162.741 165.911 223.153 240.905 268.195

55 123.296 156.330 167.440 169.398 216.787 249.473 268.075

60 123.042 153.883 174.740 174.883 212.603 256.321 267.972

65 123.050 150.838 181.785 184.064 210.986 260.262 263.974

70 123.401 147.503 189.131 194.614 211.937 256.342 261.330

75 124.084 144.199 195.728 205.220 215.076 248.727 260.103

80 124.987 141.267 200.753 214.488 219.423 242.530 257.235

85 125.849 139.128 203.911 221.171 223.439 238.117 253.949

90 126.229 138.312 205.001 223.847 225.185 236.265 252.379
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frequencies in Hz. All these frequencies are symmetrical with respect to the 45� orientation. The second,
fourth, and fifth frequencies decrease with increasing angle while the third and eighth frequencies
have an inverse behavior. The sixth and seventh frequencies exhibit either a first minimum or a first
maximum for 25� orientation. These results show that all the natural frequencies do not exhibit the same
behavior and that this must be accounted for when developing optimization codes according to the frequency
range involved.
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4. Conclusions

The ply orientation is a key parameter in optimizing composite plates for design purposes. Previous studies
reported data on the effect of ply orientations on bending natural frequencies, but very little information on
in-plane vibration is available in the literature. The present paper investigated the effect of ply orientation on
the in-plane vibration, namely the membrane natural frequencies. A theoretical model was developed for a
single composite plate accounting for bending, membrane and shear motions in the displacement field.
Rayleigh–Ritz method in conjunction with Hamilton principles was used to derive the equations of motion.
Artificial springs were used to deal with arbitrary boundary conditions and in the present investigation
emphasis was put on the free–free boundary conditions although the validation was extended and established
for simply supported boundary conditions. The whole matrix obtained by minimizing the function of
Hamilton exhibits a decoupling between the bending and the membrane motions. This property was used to
determine the behavior of the two motions separately.

The model was first validated by comparing the first bending natural frequencies of a square aluminum
plate with available data in the literature. Excellent agreement was found with a maximum discrepancy of
0.25%. The validation was then extended to the case of in-plane vibration. The upper limit of the discrepancy
was found to be 0.02%. The validation was also established for simply supported boundary conditions for
orthotropic plates by comparing results with existing data in the literature using Finite element codes. Results
show same pattern of the first two natural frequencies when varying ply orientations.

The effect of the ply orientations on the bending fundamental frequency of a square composite plate was
then studied. It was found that this frequency is symmetrical with respect to the 45� orientation. It decreases
from 0� to 45� and increases from 45� to 90�.

Regarding the in-plane vibration, the simulation showed an inverse behavior for the first natural frequency
of the membrane motion. It reaches a maximum for the 45� orientation and it is symmetrical with respect to
this orientation. Simulations performed on the next seven natural frequencies showed that they all do not
exhibit the same behavior and that special attention must be paid when developing tools for the design of
composite plates.

The authors believe that the present analysis will be helpful when developing tools for designing composite
materials since in-plane vibration is important in composite plates as reported in previous studies with regards
to the dynamics of complex systems. The knowledge of the in-plane vibration can complement the one related
to the bending vibration. This combined information can be used to tailor ply orientations to design
composites for specific applications. The modeling proposed in the present paper is general as it includes a
general modeling to deal with arbitrary conditions. In the present investigation emphasis is put on free–free
boundary conditions. As highlighted in the present paper, the authors have validated the formulation for
orthotropic plates under simply supported boundary conditions. Work is under investigation to explore the
effect of combinations of boundary conditions with varying ply orientation.
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Appendix. Definition of the parameters Ki and Mi [23, 24–27]
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K30 ¼M4ðp; q; n;mÞ,

K31 ¼M5ðp; q; n;mÞ.
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